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A DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR

HAMILTON-JACOBI EQUATIONS

CHANGQING HU AND CHI-WANG SHU *

Abstract. In this paper, we present a discontinuous Galerkin finite clement method for solving the

nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin

finite element method for solving conservation laws. The method has the flexibility of treating complicated

geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil,

and are suited for efficient parallel implementation. One and two dimensional numerical examples are given

to illustrate the capability of the method.
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1. Introduction. In this paper we consider the numerical solutions of the Hamilton-Jacobi (H J) equa-

tions

(1.1) Ct _- H((_Xl, ..., Cxd) -_ O, ¢(X, 0) -_ CO(x).

As is well known, the solutions to (1.1) are Lipschitz continuous but may have discontinuous derivatives,

regardless of the smoothness of the initial condition ¢°(x). The non-uniqueness of such solutions also

necessitates the definition of viscosity solutions, to single out a unique, practically relevant solution. (See

Crandall and Lions [11]).

A widely applied class of numerical schemes for (1.1) is the class of finite difference schemes. In [12],

Crandall and Lions proved the convergence of monotone finite difference schemes to the viscosity solutions of

(1.1). Unfortunately, monotone schemes axe at most first order accurate, measured by local truncation errors

in smooth regions of the solution. In Osher and Sethian [22] and Osher and Shu [23], a class of high order

essentially non-oscillatory (ENO) schemes were introduced, which were adapted from the methodologies for

hyperbolic conservation laws ([14], [25], [26]). The numerical results in [22] and [23] indicate convergence to

the viscosity solutions of (1.1) with high order accuracy in smooth regions, and with sharp resolution of the

discontinuous derivatives. Recently, weighted ENO (WENO) schemes for conservation laws ([20], [17]) have

also been adapted to the Hamilton-Jacobi equations (1.1), ([15]).

Finite difference methods require a structured mesh, hence are difficult to apply to complicated geometry

or for adaptive mesh refinements. Finite volume schemes, which are based on arbitrary triangulation, are

thus attractive in such cases. First order monotone type finite volume schemes were studied in [2]. A second

order ENO type finite volume scheme is developed in [19]. However, higher order finite volume schemes face

the problem of reconstruction on arbitrary triangulation, which is quite complicated. (See, e.g., [1]).

The Runge-Kutta discontinuous Galerkin method ([5, 6, 7, 8, 9]) is a method devised to numerically

solve the conservation law (CL):

(1.2) Ut-J[- fl(Zt)xl -[-'''-]- fd(lt)xa _-0, _(x,O) =uO(x).
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The method has the following attractive properties:

• It can be designed for any order of accuracy in space and time. In fact, p-version or spectral element

type version can be designed ([21]);

• It is an explicit method, thus efficient for solving the hyperbolic problem (1.2). No global linear or

nonlinear systems must be solved;

• It combines the flexibility of finite element methods in the easy handling of complicated geometry,

with the high resolution property for discontinuous solutions of finite difference and finite volume

methods through monotone fluxes or approximate Riemann solvers applied at the element interfaces

and limiters;

• It has nice stability properties: a local cell entropy inequality for the square entropy can be proven

([16]) for general triangulation for any scalar nonlinear conservation laws (1.2) in any spatial dimen-

sions and for any order of accuracy, without the need of nonlinear limiters. This implies nonlinear

L 2 stability and entropy consistency even for discontinuous solutions;

• The method is highly compact: the evolution of the information in any element depends only on

the information of itself and its immediate neighbors, regardless of the order of accuracy. This is

in contrast with high order finite volume schemes which must use wide stencils for the high order

reconstruction. This compactness is responsible for the efficient parallel implementation of the

method, see, e.g. [3].

For details of the Runge-Kutta discontinuous Galerkin method, see the references listed above and also

the review paper of Cockburn [4]. This method can also be generalized to solve problems containing higher

derivatives ([10]), which is important for some of our applications in Sect. 4.

It is well known that the Hamilton-Jacobi equation (1.1) is closely related to the conservation law (1.2),

in fact in one space dimension d -- 1 they are equivalent if one takes ¢ = u,. It is thus not surprising that

many successful numerical methods for the Hamilton-Jacobi equation (1.1) are adapted from those for the

conservation law (1.2). The high order finite difference ENO methods in [22] and [23] are such examples.

In this paper we adapt the Runge-Kutta discontinuous Galerkin method to solve the Hamilton-Jacobi

equation (1.1). In Sect. 2 the algorithm in one space dimension is described and discussed. In Sect. 3 the

algorithm for two space dimensions is developed. Numerical examples of one and two spatial dimensions are

presented in Sect. 4. Concluding remarks are given in Sect. 5.

2. One Dimensional Case. In one space dimension (1.1) becomes

(2.1) Ct + H(¢_) -- 0, ¢(x, 0) = ¢°(x).

This is a relatively easy case because (2.1) is equivalent to the conservation law

(2.2) ut + g(u)_ = O, u(x, O) = u°(z)

if we identify u = Cx.

Assuming (2.1) is solved in the interval a < x < b and it is divided into the following cells:

(2.3) a = x½ < x_ < -.. < XN+ ½ = b,

we denote

1( )(2.4) Ij = (xj_½,xj+½), xj = -2 xj_½ +xy+½ , hy = xy+½ - xj_½, h = maxhj,
3



and define the following approximation space

(2.5) V k = {v: v[G • Pk(b),j = 1,...,N}.

Here pk (Ij) is the set of all polynomials of degree at most k on the cell Ij.

A k-th order discontinuous Galerkin scheme for the one dimensional Hamilton-Jacobi equation (2.1) can

then be defined as follows: find qo • Vhk, such that

(2.6) J_lj _ztvdx- _IIj H(_z)vzdxq- [ti+½vj+ ½ - [-Ij_½v;_½= O, j= I,...,N,

for all v • V_-1. Herc

is a monotone flux, i.e. /?/is non-decreasing in the first argument and non-increasing in the second, symbol-

ically/?/(T, _), is Lipschitz continuous in both arguments, and is consistent, i.e. /?/(u, u) = H(u). We will

mainly use the simple (local) Lax-Friedrichs flux

(2.8) [-I(u-,u+) = H (U- + U+ ) - _a(u+ - u-)2

where a = max_ IH _(u) l with the maximum taken over the range covered by u- and u+. For other monotone

fluxes, e.g. the Godunov flux (see [23]). Notice that the method described above is exactly the discontinuous

Galerkin method for the conservation law equation (2.2) satisfied by the derivative u = ex. This only

determines q0 for each element up to a constant, since it is only a scheme for qo_. The missing constant can

be obtained in one of the following two ways:

1. By requiring that

(2.9)

for all v • Vh°, that is,

(2.10)

jfG (_t + H(_x))vdx = O,
j -- 1, ..., N,

j (_t -b H(_z)) dx = O, j = 1, N.

2. By using (2.10) to update only one (or a few) elements, e.g., the left-most element I1, then use

(2.11) _(xj,t) = _(Xl,t) + _(x,t) dx
1

to determine the missing constant for the cell Ij.

Both approaches are used in our numerical experiments. They perform similarly for smooth problems, with

the first approach giving slightly better results. However, it is our numerical experience that, when there are

singularities in the derivatives, the first approach will often produce dents and bumps when the integral path

in time passes through the singularities at some earlier time. The philosophy of using the second approach

is that one could update only a few elements whose time integral paths do not cross derivative singularities.

The numerical results shown in Sect. 4 are obtained with the second approach.

About the stability of the method proposed above, we can quote the following result of Jiang and Shu

[16]. Here we assume compact support or periodic boundary condition for _.



Lemma 2.1. [16]. The following L 2 stability result for the derivative 9_z holds for the _scontinuous Galerkin

method defined above, of any order of accuracy k applied to any nonlinear Hamilton-Jacobi equation (2.1):

(2.12) d-t _ dx < O.

For a finite interval [a, b], (2.12) trivially implies TVB (total variation bounded) property for the numer-

ical solution _:

(2.13) TV(cp) = 1_] dx < ¢°(x) dx.

This is a rather strong stability result, considering that it applies even if the derivative of the solution ¢x

develops discontinuities, no limiter has been added to the numerical scheme, and the scheme can be of

arbitrary high order in accuracy. It also implies convergence of at least a subsequence of the numerical

solution _ when h --_ 0. However, this stability result is not strong enough to imply that the limit solution

is the viscosity solution of (2.1).

Up to now we have only described the spatial discretization and have left the time variable t continuous

(the method of lines approach). Time diseretization is by the TVD (total variation diminishing) high order

aunge-Kutta methods developed in [25] (see also [13]). The second and third order versions used in this

paper are as follows: for solving the method of lines ODE

(2.14) _ot : L(_),

the second order TVD Runge-Kutta method is given by

(2.15) _(_)= _" + AtL(_ n)

and the third order TVD Runge-Kutta method is given by

(2.16) _(2) = 3_n + _(1) + l AtL(_(i))

_n+l = _n ÷ i_(2) -{-3AtL(_(2) ).

These Runge-Kutta methods will also be used for the two dimensional case discussed in the next section.

3. Two Dimensional Case. We consider in this section thc case of two spatial dimensions. The

algorithm in more spatial dimensions is similar. This time, the scalar Hamllton-Jacobi equation

(3.1) Ct + H(¢x, ¢u) -- 0, ¢(x, y, 0) = ¢°(x, y)

is in some sense equivalent to the following conservation law system

(3.2)

if we identify

(3.3)

ut + H(u, v)x = O, vt + H(u, v)u = O, (u, v)(x, y, O) = (u, v)°(x, y).

v) =



(3.5)

and

For example, a vanishing viscosity solution of (3.1) corresponds, via (3.3), to a vanishing viscosity solution

of (3.2), and vice versa ([18]). However, (3.2) is not a strictly hyperbolic system, which may cause problems

in its numerical solution if we treat u and v as independent variables. Instead, we would like to still use ¢

as our solution variable (a polynomial) and take its derivatives as u and v.

Assuming we are solving (3.1) in the domain [2, which has a triangulation :Th consisting of triangles or

general polygons of maximum size (diameter) h, with the following approximation space

(3.4) Vhk = {v: vlK • pk(K), VK • Th } ,

where pk (K) is again the set of all polynomials of degree at most k on the cell K. We propose a discontinuous

Galerkin method for (3.1) as follows: find _ • Vhk, such that

eEDK

(3.6) /K_Ytvdxdy-/KH(_'_Y)v_dxdy+ E _/:/2,e,gvdF=O
eEDK

for all v • Vhk-1 and all K • Th, in a least square sense. Here the numerical flux is

(3.7) : i= 1,2

where the superscript int(K) implies that the value is taken from within the element K, and the superscript

ext(K) implies that the value is taken from outside the element K and within the neighboring element K p

sharing the edge e with K. The flux (3.7) satisfies the following properties:

1. _Ii,e, K is Lipschitz continuous with respect to all its arguments;

2. Consistency:

/:/i,e,K (V¢, V¢) = H(V¢) n_,

where n = (nl, n2) is the unit outward normal to the edge e of the element K;

3. Conservation:

where K N K' = e.

We will again mainly use the simple (local) Lax-Friedrichs flux

(3.8) _i1,,,K((U,V)_,(u,v)+)=H(U-+U+ v-+v +) 1 +2 ' 2 nl - _a(u - u-)

and

(3.9) [-I2,_,K((U,V)-,(u,v)+)=H(U-+U+ v-_v+) _2 ' - n2 -- /3(v + - v-)

where a = maxu,v [OH(_,V_Ouand /3 = maxu,v 0, , with the maximum being taken over the relevant

(local) range.

Notice that (3.5)-(3.6) are exactly the discontinuous Galerkin method for the conservation law system

(3.2) satisfied by the derivatives (u, v) = V¢. For a rectangular mesh and for k = 1 this recovers the (local)

Lax-Friedrichs monotone scheme ([23]) for (3.1) if we identify u_j = ¢'+_'_-¢'-_'_2z_zand v_j = _"_+_-¢"_-_2z_y•



4. Numerical Examples.

(4.1) {

with periodicboundary conditions.

Of course, (3.5)-(3.6) have more equations than the number of degrees of freedoms (an over-determined

system) for k > 1, thus a least square solution is needed. In practice, the least square procedure is performed

as follows: we first evolve (3.2) for one time step (one inner stage for high order Runge-Kutta methods),

using the discontinuous Galerkin method (3.5)-(3.6) with u = qr and v = _o_; then _ at the next time level

(stage) is obtained (up to a constant) by least square:

I1( =- u)=+ - v) iiL:(K) = rain [1(¢: - u) 2 + (¢_ - v)2llil(K) •
_bEP_(K)

This determines _p/oreach element up toa constant,sinceitisonly a scheme for_7Vp.The missing constant

can again be obtained inone ofthe followingtwo ways:

I.By requiringthat

(3.10) /g (_t + H(_, _)) vdxdy = 0,

for all v E V ° and for all K E Th, that is,

(3.11) /_ (_Pt + H(_, _y)) dxdy = O, VK E Th

2. By using (3.11) to update only one (or a few) elements, e.g., the corner element(s), then use

BI"

(3.12) _(B, t) = _(A, t) + ]A (_ dx + dy)

to determine the missing constant. The path should be taken to avoid crossing a derivative discon-

tinuity, if possible.

In Sect. 4 we will only show numerical results obtained with the second approach, see the remarks in the

prcvious section for the one dimensional case.

We remark that the procedure discussed above is easily implemented in any triangulation, e.g., for both

rectangles and triangles.

Example 4.1. One dimensional Burgers' equation:

tT 2 =u, -l<x<l

¢(x, O) = -- COS(_X)

The local Lax-Friedrichs flux (2.8) is used. At t ----0.5/7r 2, the solution is still smooth. We list the errors

and the numerical orders of accuracy in Table 4.1. We observe that, except for the p1 case which seems to

be only first order, pk for k > 1 seems to provide close to (k + 1)-th order accuracy.

At t -- 3.5/7r 2, the solution has developed a discontinuous derivative. In Fig. 4.1, we show tim sharp

corner-like numerical solution with 41 elements obtained with pk for k -- 1, 2, 3, 4. Here and below, the solid

line is the exact solution, the circles are numerical solutions (only one point per element is drawn).

Example 4.2. One dimensional equation with a non-convex flux:

(4.2) _ Ct-cos(¢=+l)=0, -1 <x<l

( ¢(x, 0) = - eos( x)

with periodic boundary conditions.
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TABLE 4.1

Accuracy for 1D Burgers equation, t = 0.5/7r 2 .

0.17Eq-00

0.78E-01

0.35E-01

0.16E-01

0.76E-02

p1

L °¢ error

0.29E+00

0.13E+00

0.58E-01

0.27E-01

0.13E-01

order

1.12

1.16

1.12

1.02

order

1.13

1.15

1.11

1.07

p2

L 1 error

0.14E-02

0.18E-03

0.24E-04

0.28E-05

0.31E-06

p2

order

2.92

2.97

3.08

3.19

L °_ error order

0.24E-02

0.33E-03 2.88

0.37E-04 3.15

0.48E-05 2.97

0.59E-06 3.00

p3

L 1 error order

0.21E-03 --

0.13E-04 3.94

0.75E-06 4.17

0.43E-07 4.12

0.25E-08 4.10

p3

L °° error

0.69E-03

0.61E-04

0.58E-05

0.38E-06

0.23E-07

order

3.51

3.39

3.93

4.07

TABLE 4.2

Accuracy for 1D non-convex, H(u) = -cos(u-t- 1), t = 0.5/7r 2.

p4

L 1 error

0.57E-05

0.73E-06

0.32E-07

0.12E-08

0.48E-10

p4

L °_ error

0.13E,-04

0.16E-05

0.13E-06

0.59E-08

0.25E-09

p1

N L 1 error order

10 0.84E-01

20 0.36E-01 1.23

40 0.15E-01 1.26

80 0.68E-02 1.14

order

2.97

4.52

4.79

4.59

order

2.99

3.64

4.44

4.57

p1

N L _ error order

10 0.18E+00 --

20 0.73E-01 1.31

40 0.31E-01 1.24

80 0.14E-01 1.16

p2

L 1 error order

0.10E-02 -

0.15E-03 2.75

0.21E-04 2.84

0.27E-05 2.97

p2

L °° error order

0.15E-02

0.27E-03 2.43

0.47E-04 2.54

0.85E-05 2.47

p3

L 1 error order

0.34E-03

0.30E-04 3.49

0.15E-05 4.33

0.94E-07 4.00

p3

L °° error

0.11E-02

0.22E-03

0.18E-04

0.14E-05

order

2.35

3.63

3.75

p4

L 1 error

0.24F__04

0.13E-05

0.59E-07

0.21E-08

p4

order

4.28

4.42

4.78

L °_ error order

0.99E-04 --

0.13E-04 2.95

0.59E-06 4.44

0.26E-07 4.49

The local Lax-Friedrichs flux (2.8) is used. At t ----0.5/Ir 2, the solution is still smooth. The accuracy of

the numerical solution is listed in Table 4.2. We observe similar accuracy as in the previous example.

At t -- 1.5/_r 2, the solution has developed corner-like discontinuity in the derivative. The numerical

result with 41 elements is shown in Fig. 4.2.

Example 4.3. Riemann problem for the one dimensional equation with a non-convex flux:

{(4.3) Ct + _(¢z - 1)(¢_ - 4) = 0, -1 < x < 1
¢(x, 0) = -21xl

For this test problem, the discontinuous Galerkin method, as described in Sect. 2 and applied in the

previous two examples, fails to "open up" the initial single discontinuity in the derivative sufficiently to
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FIG. 4.1. One-dimensional Burgers' equation, t = 3.5/7r 2 .

generate the correct entropy solution. We have found out that a nonlinear total variation bounded limiting,

described in detail in [6] for this one dimensional case, is needed for convergence towards the entropy solution.

This and the 2D Riemann problem in Example 4.6 below are the only two examples in this paper in which

we use the nonlinear limiting. We remark that for the finite difference schemes, such nonlinear limiting or

the adaptive stencil in ENO is needed in most cases in order to enforce stability and to obtain non-oscillatory

results.

Numerical results at t = 1 with 81 elements, using the local Lax-Friedrichs flux (2.8), is shown in Fig.

4.3. The results of using the Godunov flux is shown in Fig. 4.4. We can see that while for p1, the results of

using two different monotone fluxes are significantly different in resolution, this difference is greatly reduced

for higher order of accuracy. In most of the high order cases, the simple local Lax-Friedrichs flux (2.8) should

be good enough.

Example 4.4. Two dimensional Burgers' equation:

(4.4)
Ct+(V=+¢v+l)2:0, -2<x<2,-2<y<2

2

-
with periodic boundary conditions.
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FIC. 4.2. One dimension non-convex, H(u) = - cos(u + 1), t = 1.5/_ -2.

We first use uniform rectangular meshes and the local Lax-Friedrichs flux (3.8)-(3.9). At t = 0.5/7r 2, the

solution is still smooth. The errors and orders of accuracy are listed in Table 4.3. It seems that only k-th

order of accuracy is achieved when qo is a piecewise polynomial of degree k.

At t = 1.5/7r 2, the solution has discontinuous derivatives. Fig. 4.5 is the graph of the numerical solution

with 40 × 40 elements.

Next we use triangle based triangulation, the mesh with h = ¼ is shown in Fig. 4.6. The accuracy at

t _-= 0.5/7r 2 is shown in Table 4.4. Similar accuracy pattern is observed as in the rectangular case. The result

at t = 1.5/7r 2, when the derivative is discontinuous, is shown in Fig. 4.7.

Example 4.5. Two dimensional equation:

r Ct-cos(¢x+¢u+l)=0, -2<x<2,-2<y<2
(4.5) =-
with periodic boundary conditions.

For this example we use uniform rectangular meshes. The local Lax-Friedrichs flux (3.8)-(3.9) is used.

The solution is smooth at t = 0.5/7r 2. The accuracy of the numerical solution is shown in Table 4.5.

The solution has developed a discontinuous derivative at t = 1.5/r 2. Results with 40 x 40 elements are

shown in Fig. 4.8.



TABLE 4.3

Accuracy for ZD Burgers equation, rectangular mesh, t = 0.5/7r 2.

p1

N × N L 1 error

10 x 10 8.09E-02

20 × 20 3.36E-02

40 x 40 1.48E-02

80 x 80 6.88E-03

160 x 160 3.31E-03

order

1.268

1.183

1.105

1.056

p2

L 1 error order

8.62E-03 --

1.72E-03 2.325

3.93E,-04 2.130

9.74E-05 2.013

2.45E-05 1.991

p3

L 1 error

3.19E-03

3.49E-04

6.64E-05

1.14E-05

1.68E-06

order

3.192

2.394

2.542

2.763

p1

NxN L °terror

10 × 10 2.62E-01

20 × 20 1.14E-01

40 × 40 5.00E-02

80 × 80 2.39E-02

160 × 160 1.16E-02

order

1.201

1.189

1.065

1.043

p2

L _ error order

3.56E-02

8.40E-03 2.083

2.02E-03 2.056

4.92E-04 2.038

1.21E-04 2.024

p3

L °° error

8.65E-03

1.16E-03

1.98E-04

3.13E-05

4.41E-06

TABLE 4.4

Accuracy for 219 Burgers equation, triangular mesh, t = 0.5/_r 2 .

order

2.899

2.551

2.661

2.827

h

1

1/2

1/4

1/8

L 1 error

5.48E-02

1.35E-02

2.94E-03

6.68E-04

p2

order L °_ error order

1.52E-01 --

2.02 6.26E-02 1.28

2.20 1.55F__02 2.01

2.14 3.44E-03 2.17

L 1 error

1.17E-02

1.35E-03

1.45E-04

1.71E-05

p3

order L c_ error order

--- 2.25E-02

3.12 4.12E-03 2.45

3.22 4.31E-04 3.26

3.08 7.53E-05 2.52

TABLE 4.5

Accuracy, 219, H(u, v) : - cos(u + v + 1), t = 0.5/lr 2.

p1

N x N L 1 error

10 x 10 6.47E-02

20 × 20 2.54E-02

40 × 40 1.05E-02

80 x 80 4.74E-03

160 × 160 2.23E-03

p1

N × N L _ error

10 x 10 1.47E-01

20 x 20 6.75E-02

40 x 40 2.65E-02

80 x 80 1.18E-02

160 × 160 2.23E-03

order

1.349

1.274

1.147

1.088

order

1.123

1.349

1.167

1.088

p2

L 1 error order

8.31E-03

1.93E-03 2.106

4.58E-04 2.075

1.13E-04 2.019

2.83E-05 1.997

p2

L °° error

1.88E-02

7.34E-03

1.83E-03

4.55E-04

1.13E-04

order

1.357

2.004

2.008

2.010

p3

L 1 error

1.35E-02

1.57E-03

2.39E-04

2.89E-05

4.38E-06

p3

L °° error

2.36E-02

3.44E-03

4.59E,-04

5.78E-05

8.54E-06

order

3.104

2.716

3.048

2.722

order

2.778

2.906

2.989

2.759
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FIG. 4.3. One dimension Riemann problem, local Lax-_'_'iedrichs flux, H(u) = 1 2_(u -- 1)(u 2 -- 4),t = 1.

Example 4.6. Two dimensional Riemann problem:

(4.6) _ Ctg-sin(¢xg-¢v)=0, -1 <x< 1, -1 <y< 1

/ ¢(x. y.0) = _(lyl- Ixl)

For this example we use a uniform rectangular mesh with 40 x 40 elements. The local Lax-Friedrichs

flux (3.8)-(3.9) is used. As it was mentioned in Example 4.3, we have found out that a nonlinear limiting

[8], [9] is needed, for convergence towards an entropy solution. We show the numerical solution at t -- 1 in

Fig. 4.9.

Example 4.7. The problem of a propagating surface:

(4.7)
{ _, - (1 - _K) _/z + _: + _: = 0, 0<=<1,0<y<1¢(_, y, 0) = 1 - ¼(cos(2_ - z)) (cos(2_y - z))

where K is the mean curvature defined by

(4.8) K =
¢..(1 + ¢,2)- 2¢=,¢.¢, + ¢,,(1 + ¢:)

(1 + ¢: + ¢_)_

and e is a small constant. Periodic boundary condition is used.

11
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FIG. 4.4. One dimension Riemann problem, Godunov flux, H(u) = 1 2_('u --1)(u '_-4),t-- 1.

This problem was studied in [22] by using the finite difference ENO schemes. We apply the discontinuous

Galerkin method, with the second derivative terms handled by the local discontinuous Galerkin techniques

presented and analyzed in [10], which amounts to solving the following system

ep(l+_2)_2q_v+r0+_)ut - _/1 + u 2 + v 2 + ]+,_2+v_ Jx = 0

_p(l+v2)_2quvTr(1A_tt,_) "_Vt-- _/1 -'1- U2 -k- V2 + e l+u2+v 2 ,)y----O

(4.9) p - u_ = 0

q-uu=O

r--vy:O

using the discontinuous Galerkin method. The details of the method, especially the choices of fluxes, which

are important for stability, can be found in [10].

We first use a uniform rectangular mesh of 50 × 50 elements and the local Lax-Friedrichs flux (3.8)-(3.9).

The results of E = 0 (pure convection) and e = 0.1 are presented in Fig. 4.10 and Fig. 4.11, respectively.

Notice that the surface at t = 0 is shifted downward by 0.35 in order to show the detail of the solution at

t --- 0.3.

Next we use a triangulation shown in Fig. 4.12. We refine the mesh around the center of domain where

the solution develops discontinuous derivatives (for the e = 0 case). There are 2146 triangles and 1108 nodes

12
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FIG. 4.5. Two dimension Burgers' equation, rectangular mesh, t--1.5/Tr 2.
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FIG. 4.6. Triangulation for two dimensional Burgers equation, h -- 3"

in this triangulation. The solutions are displayed in Fig. 4.13 and Fig. 4.14, respectively, for e -- 0 (pure

convection) and E = 0.1. Notice that we again shift the solution at t = 0.0 downward by 0.35 to show the

detail of the solutions at later time.

Example 4.8. The problem of a propagating surface on a unit disk. The equation is the same as (4.7) in

13



p2, h = 1/8 p3, h = 1/8

N O

FIG. 4.7. Two dimension Burgers' equation, triangular mesh, _=1.5/_ 2 .

p2, 40x40 elements p3, 40x40 elements

FIG. 4.8. Two dimensional, H(u, v) ---- - cos(u + v + 1), t = 1.5/1r 2 .

the previous example, but it is solved on a unit disk x 2 + y2 < 1 with an initial condition

and a Neumann type boundary condition V¢ -- 0.

It is difficult to use rectangular meshes for this problem. Instead we use the triangulation shown in Fig.

4.15. Notice that we have again refined the mesh near the center of the domain where the solution develops

discontinuous derivatives. There are 1792 triangles and 922 nodes in this triangulation. The solutions with

e = 0 are displayed in Fig. 4.16. Notice that the solution at t = 0 is shifted downward by 0.2 to show the

detail of the solution at later time.
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FIG. 4.9. Two dimensional Riemann problem, H(u, v) = sin(u + v), t = 1.

p2, 50x50 elements p3, 50x50 elements
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t= 0.9
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- 0.35

y

N
or

t=0.9

t=0.6

t=0.3

t= 0.0
- 0.35

v

FIG. 4.10. Propagating surfaces, rectangular mesh, e = O.

The solution with E = 0.1 are displayed in Fig. 4.17. Notice that the solution at t = 0 is again shifted

downward by 0.2 to show the detail of the solution at later time.

15



p2, 50x50 elements P=, 50x50 elements

o

t: 0.3

t= 0.0
- 0.35

_= 0.6

t=0.3

FIC. 4.11. Propagating surfaces, rectangular mesh, _ = 0.1.

Example 4.9. A problem from optimal control [23]:

1 sin 2 (1 cosx) 0, -Tr < x < 7r, -zr < y < _r
(4.10) ¢_ + (sin y)¢_ + (sinx + sign(¢u))¢y - _ y - - =

¢(x, _, 0) = 0

with periodic boundary conditions. We use a uniform rectangular mesh of 40 × 40 elements and the local

Lax-Friedrichs flux (3.8)-(3.9). The solution at t -- 1 is shown in Fig. 4.18, while the optimal control

w = sign(¢_) is shown in Fig. 4.19.

Notice that our method computes V¢ as an independent variable. It is very desirable for those problems

in which the most interesting features are contained in the first derivatives of ¢, as in this optimal control

problem.

Example 4.10. A problem from computer vision [24]:

(4.11)
Ct+I(x,Y)v/l+¢_+¢_-l=O,¢(x, y, o) = o

-l<x<l,-l<y<l

with ¢ = 0 as the boundary condition. The steady state solution of this problem is the shape lighted by

a source located at infinity with vertical direction. The solution is not unique if there are points at which

I(x, y) = 1. Conditions must be prescribed at those points where I(x, y) = 1. Since our method is a finite

16



FIG.4.12.Triangulation used for the propagatin 9 surfaces.

element method, we need to prescribe suitable conditions at the correspondent elements. We take

(4.12) I(x, y) = l/V/1 + (1 - Ixl) 2 + (1 - ly[) 2

The exact steady solution is ¢(x, y, oc) = (1 - Ixl)(t - lyl), We use a uniform rectangular mesh of 40 x 40

elements and the local Lax-Friedrichs flux (3.8)-(3.9). We impose the exact boundary conditions for u =

Cz, v = Cu from the above exact steady solution, and take the exact value at one point (the lower left corner)

to recover ¢. The results for p2 and p3 are presented in Fig. 4.20, while Fig. 4.21 contains the history of

iterations to the steady state.

Next we take

(4.13) I(x,y) = l/V/1 + 4y2(1 - x2) 2 + 4x2(1 - y2)2

The exact steady solution is ¢(x, y, oc) = (1 -x2)(1- y2). We again use a uniform rectangular mesh of 40 x 40

elements, the local Lax-Friedrichs flux (3.8)-(3.9), impose the exact boundary conditions for u = Cx, v -- ¢_

from the above exact steady solution, and take the exact value at one point (the lower left corner) to recover

0. A continuation method is used, with the steady solution using

(4.14) Ie(x,y) = l/V/1 + 4y2(1 - x2) 2 + 4x2(1 - y2)2 4-

for bigger E as the initial condition for smaller c. The sequence of e used are E = 0.2, 0.05, 0. The results for

p2 and p3 are presented in Fig. 4.22.

5. Concluding Remarks.. We have developed and tested a class of discontinuous Galerkin methods

for solving nonlinear Hamilton-Jacobi equations. These methods have the advantage of easy handling of

complicated geometry and local mesh refinements, as well as efficient parallel implementations. Numerical

examples in one and two space dimensions are shown to illustrate the capability of the methods.
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FIG. 4.13. Propagatin 9 surfaces, triangular mesh, _ = O.
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FIG. 4.18. Control problem, t = 1.
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FIG. 4.19. Control problem, t = 1, w = sign(¢y).
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